3.119 \(\int \frac{\sec ^4(c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx\)

Optimal. Leaf size=140 \[ \frac{2 \tan (c+d x) \sec ^2(c+d x)}{5 d \sqrt{a \sec (c+d x)+a}}-\frac{\sqrt{2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d}-\frac{2 \tan (c+d x) \sqrt{a \sec (c+d x)+a}}{15 a d}+\frac{28 \tan (c+d x)}{15 d \sqrt{a \sec (c+d x)+a}} \]

[Out]

-((Sqrt[2]*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(Sqrt[a]*d)) + (28*Tan[c + d*x])
/(15*d*Sqrt[a + a*Sec[c + d*x]]) + (2*Sec[c + d*x]^2*Tan[c + d*x])/(5*d*Sqrt[a + a*Sec[c + d*x]]) - (2*Sqrt[a
+ a*Sec[c + d*x]]*Tan[c + d*x])/(15*a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.275899, antiderivative size = 140, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {3822, 4010, 4001, 3795, 203} \[ \frac{2 \tan (c+d x) \sec ^2(c+d x)}{5 d \sqrt{a \sec (c+d x)+a}}-\frac{\sqrt{2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d}-\frac{2 \tan (c+d x) \sqrt{a \sec (c+d x)+a}}{15 a d}+\frac{28 \tan (c+d x)}{15 d \sqrt{a \sec (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^4/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

-((Sqrt[2]*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(Sqrt[a]*d)) + (28*Tan[c + d*x])
/(15*d*Sqrt[a + a*Sec[c + d*x]]) + (2*Sec[c + d*x]^2*Tan[c + d*x])/(5*d*Sqrt[a + a*Sec[c + d*x]]) - (2*Sqrt[a
+ a*Sec[c + d*x]]*Tan[c + d*x])/(15*a*d)

Rule 3822

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*d^2
*Cot[e + f*x]*(d*Csc[e + f*x])^(n - 2))/(f*(2*n - 3)*Sqrt[a + b*Csc[e + f*x]]), x] + Dist[d^2/(b*(2*n - 3)), I
nt[((d*Csc[e + f*x])^(n - 2)*(2*b*(n - 2) - a*Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b,
d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[n, 2] && IntegerQ[2*n]

Rule 4010

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> -Simp[(B*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*(m + 2)), I
nt[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*B*(m + 1) + (A*b*(m + 2) - a*B)*Csc[e + f*x], x], x], x] /; Free
Q[{a, b, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] &&  !LtQ[m, -1]

Rule 4001

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> -Simp[(B*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(a*B*m + A*b*(m + 1))/(b*(
m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B, e, f, m}, x] && NeQ[A*b - a*B,
0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] &&  !LtQ[m, -2^(-1)]

Rule 3795

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sec ^4(c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx &=\frac{2 \sec ^2(c+d x) \tan (c+d x)}{5 d \sqrt{a+a \sec (c+d x)}}+\frac{\int \frac{\sec ^2(c+d x) (4 a-a \sec (c+d x))}{\sqrt{a+a \sec (c+d x)}} \, dx}{5 a}\\ &=\frac{2 \sec ^2(c+d x) \tan (c+d x)}{5 d \sqrt{a+a \sec (c+d x)}}-\frac{2 \sqrt{a+a \sec (c+d x)} \tan (c+d x)}{15 a d}+\frac{2 \int \frac{\sec (c+d x) \left (-\frac{a^2}{2}+7 a^2 \sec (c+d x)\right )}{\sqrt{a+a \sec (c+d x)}} \, dx}{15 a^2}\\ &=\frac{28 \tan (c+d x)}{15 d \sqrt{a+a \sec (c+d x)}}+\frac{2 \sec ^2(c+d x) \tan (c+d x)}{5 d \sqrt{a+a \sec (c+d x)}}-\frac{2 \sqrt{a+a \sec (c+d x)} \tan (c+d x)}{15 a d}-\int \frac{\sec (c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx\\ &=\frac{28 \tan (c+d x)}{15 d \sqrt{a+a \sec (c+d x)}}+\frac{2 \sec ^2(c+d x) \tan (c+d x)}{5 d \sqrt{a+a \sec (c+d x)}}-\frac{2 \sqrt{a+a \sec (c+d x)} \tan (c+d x)}{15 a d}+\frac{2 \operatorname{Subst}\left (\int \frac{1}{2 a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}\\ &=-\frac{\sqrt{2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right )}{\sqrt{a} d}+\frac{28 \tan (c+d x)}{15 d \sqrt{a+a \sec (c+d x)}}+\frac{2 \sec ^2(c+d x) \tan (c+d x)}{5 d \sqrt{a+a \sec (c+d x)}}-\frac{2 \sqrt{a+a \sec (c+d x)} \tan (c+d x)}{15 a d}\\ \end{align*}

Mathematica [A]  time = 0.202305, size = 106, normalized size = 0.76 \[ \frac{\tan (c+d x) \left (2 \sqrt{1-\sec (c+d x)} \left (3 \sec ^2(c+d x)-\sec (c+d x)+13\right )-15 \sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{1-\sec (c+d x)}}{\sqrt{2}}\right )\right )}{15 d \sqrt{1-\sec (c+d x)} \sqrt{a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^4/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

((-15*Sqrt[2]*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]] + 2*Sqrt[1 - Sec[c + d*x]]*(13 - Sec[c + d*x] + 3*Sec[c
+ d*x]^2))*Tan[c + d*x])/(15*d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

Maple [B]  time = 0.19, size = 314, normalized size = 2.2 \begin{align*} -{\frac{1}{60\,ad \left ( \cos \left ( dx+c \right ) \right ) ^{2}\sin \left ( dx+c \right ) } \left ( 15\,\ln \left ({\frac{1}{\sin \left ( dx+c \right ) } \left ( \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) -\cos \left ( dx+c \right ) +1 \right ) } \right ) \left ( -2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}} \right ) ^{5/2}\sin \left ( dx+c \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{2}+30\,\ln \left ({\frac{1}{\sin \left ( dx+c \right ) } \left ( \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) -\cos \left ( dx+c \right ) +1 \right ) } \right ) \left ( -2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}} \right ) ^{5/2}\sin \left ( dx+c \right ) \cos \left ( dx+c \right ) +15\,\ln \left ({\frac{1}{\sin \left ( dx+c \right ) } \left ( \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) -\cos \left ( dx+c \right ) +1 \right ) } \right ) \left ( -2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}} \right ) ^{5/2}\sin \left ( dx+c \right ) +104\, \left ( \cos \left ( dx+c \right ) \right ) ^{3}-112\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}+32\,\cos \left ( dx+c \right ) -24 \right ) \sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^4/(a+a*sec(d*x+c))^(1/2),x)

[Out]

-1/60/d/a*(15*ln(((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(co
s(d*x+c)+1))^(5/2)*sin(d*x+c)*cos(d*x+c)^2+30*ln(((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-cos(d*x+c)+1
)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(5/2)*sin(d*x+c)*cos(d*x+c)+15*ln(((-2*cos(d*x+c)/(cos(d*x+c)+1))
^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(5/2)*sin(d*x+c)+104*cos(d*x+c)^3-1
12*cos(d*x+c)^2+32*cos(d*x+c)-24)*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)/cos(d*x+c)^2/sin(d*x+c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{4}}{\sqrt{a \sec \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^4/sqrt(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [A]  time = 2.39997, size = 914, normalized size = 6.53 \begin{align*} \left [\frac{15 \, \sqrt{2}{\left (a \cos \left (d x + c\right )^{3} + a \cos \left (d x + c\right )^{2}\right )} \sqrt{-\frac{1}{a}} \log \left (\frac{2 \, \sqrt{2} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt{-\frac{1}{a}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, \cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \,{\left (13 \, \cos \left (d x + c\right )^{2} - \cos \left (d x + c\right ) + 3\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{30 \,{\left (a d \cos \left (d x + c\right )^{3} + a d \cos \left (d x + c\right )^{2}\right )}}, \frac{2 \,{\left (13 \, \cos \left (d x + c\right )^{2} - \cos \left (d x + c\right ) + 3\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right ) + \frac{15 \, \sqrt{2}{\left (a \cos \left (d x + c\right )^{3} + a \cos \left (d x + c\right )^{2}\right )} \arctan \left (\frac{\sqrt{2} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt{a} \sin \left (d x + c\right )}\right )}{\sqrt{a}}}{15 \,{\left (a d \cos \left (d x + c\right )^{3} + a d \cos \left (d x + c\right )^{2}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/30*(15*sqrt(2)*(a*cos(d*x + c)^3 + a*cos(d*x + c)^2)*sqrt(-1/a)*log((2*sqrt(2)*sqrt((a*cos(d*x + c) + a)/co
s(d*x + c))*sqrt(-1/a)*cos(d*x + c)*sin(d*x + c) + 3*cos(d*x + c)^2 + 2*cos(d*x + c) - 1)/(cos(d*x + c)^2 + 2*
cos(d*x + c) + 1)) + 4*(13*cos(d*x + c)^2 - cos(d*x + c) + 3)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x
+ c))/(a*d*cos(d*x + c)^3 + a*d*cos(d*x + c)^2), 1/15*(2*(13*cos(d*x + c)^2 - cos(d*x + c) + 3)*sqrt((a*cos(d*
x + c) + a)/cos(d*x + c))*sin(d*x + c) + 15*sqrt(2)*(a*cos(d*x + c)^3 + a*cos(d*x + c)^2)*arctan(sqrt(2)*sqrt(
(a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c)))/sqrt(a))/(a*d*cos(d*x + c)^3 + a*d*cos
(d*x + c)^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{4}{\left (c + d x \right )}}{\sqrt{a \left (\sec{\left (c + d x \right )} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**4/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral(sec(c + d*x)**4/sqrt(a*(sec(c + d*x) + 1)), x)

________________________________________________________________________________________

Giac [A]  time = 10.0761, size = 277, normalized size = 1.98 \begin{align*} -\frac{\sqrt{2}{\left (\frac{15 \, \log \left ({\left | -\sqrt{-a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt{-a} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} + \frac{2 \,{\left ({\left (\frac{17 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}}{\mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} - \frac{20 \, a^{2}}{\mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + \frac{15 \, a^{2}}{\mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - a\right )}^{2} \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}}\right )}}{15 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-1/15*sqrt(2)*(15*log(abs(-sqrt(-a)*tan(1/2*d*x + 1/2*c) + sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/(sqrt(-a)*sgn
(tan(1/2*d*x + 1/2*c)^2 - 1)) + 2*((17*a^2*tan(1/2*d*x + 1/2*c)^2/sgn(tan(1/2*d*x + 1/2*c)^2 - 1) - 20*a^2/sgn
(tan(1/2*d*x + 1/2*c)^2 - 1))*tan(1/2*d*x + 1/2*c)^2 + 15*a^2/sgn(tan(1/2*d*x + 1/2*c)^2 - 1))*tan(1/2*d*x + 1
/2*c)/((a*tan(1/2*d*x + 1/2*c)^2 - a)^2*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/d